A Detailed Exposition of a Proof of Hua's Lemma, following Bob Vaughan

Joe Clark

April 2016

1 Notation

I will be following Bob Vaughan's use of notation in this proof.
Let n be a sufficiently large integer, and let $N=\left\lfloor n^{1 / k}\right\rfloor$.
Let k denote a natural number (usually $k \geq 2$). All statements with ϵ are true for every positive real ϵ.

The Vinogradov symbols \ll and \gg are used standardly: Given functions f and g (where g takes non-negative real fvalues), $f \ll g$ means $|f| \leq C g$, where C is a constant. If f is also non-negative, then $f \gg g$ means $g \ll f$.The Vinogradov symbols may have implicit dependance on k and ϵ.

Given a function ϕ of a real variable α, iteratively define

$$
\begin{aligned}
\Delta_{1}(\phi(\alpha) ; \beta) & =\phi(\alpha+\beta)-\phi(\alpha), \\
\Delta_{j+1}\left(\phi(\alpha) ; \beta_{1}, \ldots, \beta_{j+1}\right) & =\Delta_{1}\left(\Delta_{j}\left(\phi(\alpha) ; \beta_{1}, \ldots, \beta_{j}\right) ; \beta_{j+1}\right) .
\end{aligned}
$$

Finally,

$$
\begin{equation*}
f(\alpha):=\sum_{m=1}^{N} e^{2 \pi i m^{k} \alpha} \tag{1.1}
\end{equation*}
$$

2 A Useful Fact from Number Theory

Let $d(n)$ denote the number of positive divisors of n for any natural number n. If n has prime factorization $n=p_{1}^{a_{1}} \ldots p_{k}^{a_{k}}$, we know:

$$
d(n)=\prod_{i=1}^{k}\left(a_{i}+1\right)
$$

It is worth noting first that the number of p^{a} satisfying $a+1>p^{\epsilon a}$ is finite.
Fix ϵ. Since the exponential function $p^{\epsilon a}$ eventually grows more quickly than the linear function $a+1$, only finitely many powers of any p will satisfy the inequality. Specifically, as p gets sufficiently large, no power of p will satisfy the inequality. Since ϵ is fixed, $\exists p$ such that $p>\max \left\{2^{1 / \epsilon}, \epsilon^{1 / \epsilon}\right\}$. By defining $f(x)=p^{\epsilon x}$ and $g(x)=x+1$, we see that $f(1)=p^{\epsilon}>2=g(1)$ and $f^{\prime}(x)=$ $\epsilon(\log p) p^{\epsilon x}>1=g^{\prime}(x)$ for $x \geq 1$. Then, since $f(x) \geq g(x)$ for $x \geq 1$, no power of p satisfies the inequality.

This established, we now wish to prove that $d(n) \ll n^{\epsilon}$ for every $\epsilon>0$.

Proof. Consider the prime factorization of $n=p_{1}^{a_{1}} \ldots p_{k}^{a_{k}}$. Of these p_{i}, only finitely many satisfy $a+1>p_{i}^{\epsilon a}$. Rename these $q_{1}^{a_{1}}, \ldots q_{l}^{a_{l}}$, and keep the remaining $p_{l+1}^{a_{l+1}}, \ldots, p_{k}^{a_{k}}$. Now, since the product of the q_{i} S is a constant dependent only on ϵ, say, Q, we have:

$$
d(n) \leq Q \prod_{i=1}^{k}\left(a_{i}+1\right) \leq Q \prod_{i=1}^{k} p^{\epsilon a_{i}} \leq Q n^{\epsilon}
$$

which, as required, gives:

$$
\begin{equation*}
d(n) \ll n^{\epsilon} \tag{2.1}
\end{equation*}
$$

3 A Comment on Δ-notation

We have previously defined, for a function ϕ of a real variable α :

$$
\begin{align*}
\Delta_{1}(\phi(\alpha) ; \beta) & =\phi(\alpha+\beta)-\phi(\alpha), \tag{3.1}\\
\Delta_{j+1}\left(\phi(\alpha) ; \beta_{1}, \ldots, \beta_{j+1}\right) & =\Delta_{1}\left(\Delta_{j}\left(\phi(\alpha) ; \beta_{1}, \ldots, \beta_{j}\right) ; \beta_{j+1}\right) .
\end{align*}
$$

Let $\phi(\alpha)=\alpha^{k}$. Then:

$$
\begin{aligned}
\Delta_{1}\left(\alpha^{k} ; \beta\right) & =(\alpha+\beta)^{k}-\alpha^{k}=\binom{k}{1} \alpha^{k-1} \beta+\ldots+\binom{k}{k} \beta^{k} \\
\Delta_{2}\left(\alpha^{k} ; \beta_{1}, \beta_{2}\right) & =\Delta_{1}\left(\binom{k}{1} \alpha^{k-1} \beta_{1}+\ldots+\binom{k}{k} \beta_{1}^{k} ; \beta_{2}\right) \\
& =\left(\binom{k}{1}\left(\alpha+\beta_{2}\right)^{k-1} \beta_{1}+\ldots+\binom{k}{k} \beta_{1}^{k}\right)-\left(\binom{k}{1} \alpha^{k-1} \beta_{1}+\ldots+\binom{k}{k} \beta_{1}^{k}\right) \\
& =\left(\binom{k}{1}\left(\alpha^{k-2} \beta_{1} \beta_{2}+\ldots+\beta_{1} \beta_{2}^{k-1}\right)+\ldots+\binom{k}{k-1} \beta_{1}^{k-1} \beta_{2}\right.
\end{aligned}
$$

Then, we can show that $\Delta_{j}\left(\alpha^{k} ; \beta_{1}, \ldots, \beta_{j}\right)=\beta_{1} \ldots \beta_{j} p_{j}\left(\alpha ; \beta_{1}, \ldots, \beta_{j}\right)$, where $p_{j}\left(\alpha ; \beta_{1}, \ldots, \beta_{j}\right)$ is a polynomial in α of degree $k-j$, by induction:

Proof. The case $\mathrm{j}=1$ has been demonstrated in (3.1). Suppose that

$$
\Delta_{j-1}\left(\alpha^{k} ; \beta_{1}, \ldots, \beta_{j-1}\right)=\beta_{1} \ldots \beta_{j-1} p_{j-1}\left(\alpha ; \beta_{1}, \ldots, \beta_{j-1}\right)
$$

Then, where c and d represent the appropriate binomial coefficients:

$$
\begin{aligned}
\Delta_{j}\left(\alpha^{k} ; \beta_{1}, \ldots, \beta_{j}\right)= & \Delta_{1}\left(\beta_{1} \ldots \beta_{j-1} p_{j-1}\left(\alpha ; \beta_{1}, \ldots, \beta_{j-1}\right) ; \beta_{j}\right) \\
= & \Delta_{1}\left(c_{k-j+1} \beta_{1} \ldots \beta_{j-1} \alpha^{k-j+1}+\ldots+c_{0} \beta_{1} \ldots \beta_{j-1} ; \beta_{j}\right) \\
= & \left(c_{k-j+1} \beta_{1} \ldots \beta_{j-1}\left(\alpha+\beta_{j}\right)^{k-j+1}+\ldots+c_{0} \beta_{1} \ldots \beta_{j-1}\right) \\
& -\left(c_{k-j+1} \beta_{1} \ldots \beta_{j-1} \alpha^{k-j+1}+\ldots+c_{0} \beta_{1} \ldots \beta_{j-1}\right) \\
= & d_{k-j} \beta_{1} \ldots \beta_{j} \alpha^{k-j}+\ldots+d_{0} \beta_{1} \ldots \beta_{j}
\end{aligned}
$$

which is exactly what was to be shown. Then:

$$
\begin{equation*}
\Delta_{j}\left(\alpha^{k} ; \beta_{1}, \ldots, \beta_{j}\right)=\beta_{1} \ldots \beta_{j} p_{j}\left(\alpha ; \beta_{1}, \ldots, \beta_{j}\right) \tag{3.2}
\end{equation*}
$$

where $p_{j}\left(\alpha ; \beta_{1}, \ldots, \beta_{j}\right)$ is a polynomial in α of degree $k-j$ with integer-valued coefficients.

4 Proof of Parseval's Identity

We will use a finite version of Parseval's Identity for the purposes of this proof.
Suppose $f: \mathbb{Z} \rightarrow \mathbb{C}$ has finite support - that is, $f(x)=0$ for all x outside of some large interval, and define $\hat{f}:[0,1) \rightarrow \mathbb{C}$ by :

$$
\hat{f}(\alpha)=\sum_{x \in \mathbb{Z}} f(x) e^{2 \pi i x \alpha} ; \hat{g}(\alpha)=\sum_{x \in \mathbb{Z}} g(x) e^{2 \pi i x \alpha}
$$

Then

$$
\begin{equation*}
\int_{0}^{1} \hat{f}(\alpha) \overline{\hat{g}(\alpha)} d \alpha=\sum_{x \in \mathbb{Z}} f(x) \overline{g(x)} \tag{4.1}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
\int_{0}^{1} \hat{f}(\alpha) \overline{\hat{g}(\alpha)} d \alpha & =\int_{0}^{1}\left(\sum_{x \in \mathbb{Z}} f(x) e^{2 \pi i x \alpha} \overline{\sum_{y \in \mathbb{Z}} g(y) e^{2 \pi i y \alpha}}\right) d \alpha \\
& =\int_{0}^{1}\left(\sum_{x \in \mathbb{Z}} f(x) e^{2 \pi i x \alpha} \sum_{y \in \mathbb{Z}} \overline{g(y)} e^{-2 \pi i y \alpha}\right) d \alpha \\
& =\int_{0}^{1}\left(\sum_{x, y \in \mathbb{Z}} f(x) e^{2 \pi i x \alpha} \overline{g(y)} e^{-2 \pi i y \alpha}\right) d \alpha \\
& =\int_{0}^{1}\left(\sum_{x, y \in \mathbb{Z}} f(x) \overline{g(y)} e^{2 \pi i(x-y) \alpha} d \alpha\right. \\
& =\sum_{x, y \in \mathbb{Z}}(f(x) \overline{g(y)}) \underbrace{\int_{0}^{1} e^{2 \pi i(x-y) \alpha} d \alpha}_{1 \text { IFF } x=y, \text { else }=0} \\
& =\sum_{x \in \mathbb{Z}} f(x) \overline{g(x)} \quad=\begin{array}{l}
\end{array}, l
\end{aligned}
$$

And, in particular, if $f(x)=g(x)$, then

$$
\int_{0}^{1}|\hat{f}(\alpha)|^{2} d \alpha=\sum_{x \in \mathbb{Z}}|f(x)|^{2}
$$

5 Proof of Weyl's Lemma

Let

$$
T(\phi)=\sum_{x=1}^{Q} e^{2 \pi i \phi(x)}
$$

where ϕ is an arbitrary arithmetical function: that is, a function $f: \mathbb{N} \rightarrow \mathbb{C}$.
Then,

$$
\begin{equation*}
|T(\phi)|^{2^{j}} \leq(2 Q)^{2^{j}-j-1} \sum_{\left|h_{1}\right|<Q} \ldots \sum_{\left|h_{j}\right|<Q} T_{j} \tag{5.1}
\end{equation*}
$$

where

$$
T_{j}=\sum_{x \in I_{j}} e^{2 \pi i \Delta_{j}\left(\phi(x) ; h_{1}, \ldots, h_{j}\right)}
$$

and the intervals $I_{j}=I_{j}\left(h_{1}, \ldots, h_{j}\right)$ (possibly empty) satisfy

$$
I_{1}\left(h_{1}\right) \subset[1, Q], I_{j}\left(h_{1}, \ldots, h_{j}\right) \subset I_{j-1}\left(h 1, \ldots, h_{j-1}\right)
$$

Proof. We will use a proof by induction on j.

When $j=1$, we wish to show that

$$
|T(\phi)|^{2^{1}} \leq(2 Q)^{2^{1}-1-1} \sum_{h_{1} \leq Q} \sum_{x \in I_{j}} e^{2 \pi i \Delta_{1}\left(\phi(x) ; h_{1}\right)}
$$

That is, that

$$
\left|\sum_{x=1}^{Q} e^{2 \pi i \phi(x)}\right|^{2} \leq \sum_{h_{1} \leq Q} \sum_{x \in I_{1}} e^{2 \pi i \Delta_{1}\left(\phi(x) ; h_{1}\right)}
$$

Now, we know that:

$$
\begin{aligned}
\left|\sum_{x=1}^{Q} e^{2 \pi i \phi(x)}\right|^{2} & =\sum_{y=1}^{Q} e^{2 \pi i \phi(y)} \sum_{x=1}^{Q} e^{-2 \pi i \phi(x)} \\
& =\sum_{x, y=1}^{Q} e^{2 \pi i(\phi(y)-\phi(x))}
\end{aligned}
$$

By substituting $y=x+h_{1}$, we get:

$$
\begin{aligned}
& =\sum_{x=1}^{Q} \sum_{y=1}^{Q} e^{2 \pi i\left(\phi\left(x+h_{1}\right)-\phi(x)\right)} \\
& =\sum_{x=1}^{Q} \sum_{x+h_{1}=1}^{Q} e^{2 \pi i \Delta_{1}\left(\phi(x), h_{1}\right)} \\
& =\sum_{x=1}^{Q} \sum_{h_{1}=1-x}^{Q-x} e^{2 \pi i \Delta_{1}\left(\phi(x), h_{1}\right)}
\end{aligned}
$$

Since x ranges from 1 to Q, we know that h_{1} ranges from $1-Q$ to $Q-1$. Since h_{1} ranges from $1-x$ to $Q-x$ we know that x also ranges from $1-h_{1}$ to $Q-h_{1}$, so $x \in I_{1}=[1, Q] \cap\left[1-h_{1}, Q-h_{1}\right]$.

Then,

$$
\begin{aligned}
&\left|\sum_{x=1}^{Q} e^{2 \pi i \phi(x)}\right|^{2}=\sum_{h_{1} \leq Q} \sum_{x \in I_{1}} e^{2 \pi i \Delta_{1}\left(\phi(x) ; h_{1}\right)} \\
& \text { so } \\
&\left|\sum_{x=1}^{Q} e^{2 \pi i \phi(x)}\right|^{2} \leq \sum_{h_{1} \leq Q} \sum_{x \in I_{1}} e^{2 \pi i \Delta_{1}\left(\phi(x) ; h_{1}\right)}
\end{aligned}
$$

The base case established, assume the conclusion (5.1) is true for j.

First, note that

$$
\begin{aligned}
\left|T_{j}\right|^{2} & =\left|\sum_{x \in I_{j}} e^{2 \pi i \Delta_{j}\left(\phi(x) ; h_{1}, \ldots, h_{j}\right)}\right|^{2} \\
& =\sum_{y \in I_{j}} e^{2 \pi i \Delta_{j}\left(\phi(y) ; h_{1}, \ldots, h_{j}\right)} \sum_{x \in I_{j}} e^{-2 \pi i \Delta_{j}\left(\phi(x) ; h_{1}, \ldots, h_{j}\right)}
\end{aligned}
$$

By substituting $y=x+h_{j+1},\left|h_{j+1}\right|<Q$, we get:

$$
\begin{aligned}
& =\sum_{\left|h_{j+1}\right|<Q} \sum_{x+h_{j+1} \in I_{j}} \sum_{x \in I_{j}} e^{2 \pi i\left(\Delta_{j}\left(\phi\left(x+h_{j+1}\right) ; h_{1}, \ldots, h_{j}\right)-\Delta_{j}\left(\phi(x) ; h_{1}, \ldots, h_{j}\right)\right)} \\
& =\sum_{\left|h_{j+1}\right|<Q} \sum_{x \in I_{j+1}} e^{2 \pi i \Delta_{j+1}\left(\phi(x) ; h_{1}, \ldots, h_{j+1}\right)} \\
& =T_{j+1}
\end{aligned}
$$

where $I_{j+1}=I_{j} \cap\left\{x \mid x+h \in I_{j}\right\}$
Now, by squaring both sides of (5.1), we get

$$
\begin{aligned}
|T(\phi)|^{2^{j+1}} & \leq\left((2 Q)^{2^{j}-j-1}\right)^{2}\left(\sum_{\left|h_{1}\right|<Q} \ldots \sum_{\left|h_{j}\right|<Q} T_{j}\right)^{2} \\
& \leq(2 Q)^{2^{j+1}-2 j-2} \sum_{\left|h_{1}\right|<Q} \cdots \sum_{\left|h_{j}\right|<Q}\left|T_{j}\right|^{2}(\text { Cauchy-Schwartz* }) \\
& \leq(2 Q)^{2^{j+1}-2 j-2}(2 Q)^{j} \sum_{\left|h_{1}\right|<Q} \cdots \sum_{\left|h_{j}\right|<Q}\left|T_{j}\right|^{2} \\
& =(2 Q)^{2^{j+1}-(j+1)-1} \sum_{\left|h_{1}\right|<Q} \cdots \sum_{\left|h_{j}\right|<Q}\left|T_{j}\right|^{2} \\
& =(2 Q)^{2^{j+1}-(j+1)-1} \sum_{\left|h_{1}\right|<Q} \cdots \sum_{\left|h_{j}\right|<Q} T_{j+1}
\end{aligned}
$$

*A well-known formulation of the Cauchy-Schwartz Inequality is:

$$
\sum a_{i} b_{i} \leq \sqrt{\sum a_{i}^{2}} \sqrt{\sum b_{i}^{2}}
$$

When both sides are squared, this yields:

$$
\left(\sum a_{i} b_{i}\right)^{2} \leq \sum a_{i} \sum b_{i}
$$

This is the form we use iteratively in this step, taking $a_{i}=T_{j}$ and $b_{i}=1$.

The result is then proved.

6 Proof of Hua's Lemma

Suppose that $1 \leq j \leq k$. Then,

$$
\begin{equation*}
\int_{0}^{1}|f(\alpha)|^{2 j} d \alpha \ll N^{2^{j}-j+\epsilon} \tag{6.1}
\end{equation*}
$$

Proof. We will use a proof by induction on j.

6.1 Base Case $j=1$

First, suppose that $j=1$. We know by the Fundamental Theorem of Calculus that

$$
\int_{0}^{1} e^{2 \pi i x^{k} \alpha}= \begin{cases}1, & x=0 \tag{6.2}\\ 0, & x \neq 0\end{cases}
$$

where $x \in \mathbb{Z}$.
The proof of Parseval's Lemma as given works just as well with $e^{2 \pi i x^{k} \alpha}$ as it does with $e^{2 \pi i x \alpha}$ (as shown in Section 4), since it is still true that $e^{2 \pi i x^{k} \alpha}=1$ IFF $x_{m}=x_{n}$, else $=0$. So, Parseval's Identity holds, with $f(x)=1$, so by definition of $f(\alpha)$,

$$
\int_{0}^{1} e^{2 \pi i x^{k} \alpha}=\sum_{m=1}^{N} 1=N \ll N^{2^{1}-1+\epsilon}=N^{1+\epsilon}
$$

This is clearly true. Done.

6.2 Inductive case

Now, let us suppose that (6.1) is true for $1 \leq j \leq k-1$. By using $\phi(x)=\alpha x^{k}$ in Weyl's Lemma (5.1) along with (3.2), we obtain:

$$
|f(\alpha)|^{2^{j}} \ll(2 N)^{2^{j}-j-1} \sum_{h_{1}}{\underset{\mathrm{~h}}{\mathrm{i}}} \ddot{\leq}_{\mathrm{S}} \sum_{h_{j}} \sum_{x \in I_{j}} e^{2 \pi i \alpha h_{1} \ldots h_{j} p_{j}\left(x ; h_{1}, \ldots, h_{j}\right)}
$$

By (3.2), we know that $p_{j}\left(x ; h_{1}, \ldots, h_{j}\right)$ is a polynomial in x of degree $k-j$ with integer coefficients.

6.2.1 Defining and Bounding c_{h}

Since x and all h_{i} are integers, the value of the polynomial when evaluated must also be an integer. Reasoning thusly, we can simply rewrite the multiple sum as a single sum over the evaluated values of the polynomial - to wit, the integers, along with a constant c_{h} that is the number of solutions to $h_{1} \ldots h_{j} p_{j}\left(x ; h_{1}, \ldots, h_{j}\right)=h$.

Then, we have:

$$
\begin{equation*}
|f(\alpha)|^{2^{j}} \ll(2 N)^{2^{j}-j-1} \sum_{h} c_{h} e^{2 \pi i \alpha h} \tag{6.3}
\end{equation*}
$$

Now, let us consider bounds on the c_{h}.
c_{0} is the number of solutions to $h_{1} \ldots h_{j} p_{j}\left(x ; h_{1}, \ldots, h_{j}\right)=0$. There are $(2 N+1)^{j}$ distinct ways to fix the h_{i} such that $\left|h_{i}\right| \leq N$, as specified by the bounded sums. Given fixed h_{i}, the polynomial can have at most $k-j$ roots, since it is of order $k-j$. Then, there are at most $(k-j)(2 N+1)^{j} \ll N^{j}$ solutions. By the nature of the Vinogradov notation, we can then conclude that:

$$
\begin{equation*}
c_{0} \ll N^{j} \tag{6.4}
\end{equation*}
$$

Now, for $h \neq 0$, we make the key observation that p_{j} must be a factor of h. Since all the $h_{i} \leq N$, we know that $|h| \leq N^{y}$, where y is an arbitrary constant. By our useful fact from number theory (2.1), we know that:

$$
d(h) \ll N^{y \epsilon}
$$

Since p_{j} is a polynomial of degree $k-j$, only $k-j$ values of x can equal each divisor, so

$$
c(h) \ll N^{y(k-j) \epsilon}
$$

And if we substitute in $\frac{\epsilon}{y(k-j)}$ (for if it is true for this smaller value, it is surely true for the larger value that is ϵ), we get:

$$
\begin{equation*}
c_{h} \ll N^{\epsilon}(h \neq 0) \tag{6.5}
\end{equation*}
$$

6.2.2 Defining and Bounding b_{h}

Consider again the expression $|f(\alpha)|^{2^{j}}$. By the definition of (1.1), we have

$$
\overline{f(\alpha)}=\sum_{m=1}^{N} e^{-2 \pi i m^{k} \alpha}=f(-\alpha)
$$

Then,

$$
\begin{aligned}
|f(\alpha)|^{2^{j}} & =\sqrt{f(\alpha)^{2^{j}} \overline{f(\alpha)^{2^{j}}}} \\
& =f(\alpha)^{2^{j-1}} f(-\alpha)^{2^{j-1}} \\
& =\sum_{\substack{\left|x_{1}\right|<N \\
1 \leq i \leq 2^{j-1}}} e^{2 \pi i\left(x_{1}^{k}+\ldots+x_{2 j-1}^{k}\right) \alpha} \sum_{\substack{\left|y_{1}\right|<N \\
1 \leq i \leq 2^{j-1}}} e^{-2 \pi i\left(y_{1}^{k}+\ldots+y_{2 j-1}^{k}\right) \alpha} \\
& =\sum_{\substack{\left|x_{1}\right|,\left|y_{1}\right|<N \\
1 \leq i \leq 2^{j-1}}} e^{2 \pi i\left(x_{1}^{k}+\ldots+x_{2 j-1}^{k}-y_{1}^{k}-\ldots-y_{2 j-1}^{k}\right) \alpha} \\
& =\sum_{h} b_{h} e^{-2 \pi i \alpha h}
\end{aligned}
$$

Then,

$$
\begin{equation*}
|f(\alpha)|^{2^{j}}=\sum_{h} b_{h} e^{-2 \pi i \alpha h} \tag{6.6}
\end{equation*}
$$

where b_{h} is the number of solutions to $x_{1}^{k}+\ldots+x_{2^{j-1}}^{k}-y_{1}^{k}-\ldots-y_{2^{j-1}}^{k}=h$, $x_{i}, y_{i} \leq N$.

If we let $\alpha=0$, then we get:

$$
\begin{equation*}
\sum_{h} b_{h}(1)=f(0)^{2^{j}}=N^{2^{j}} \tag{6.7}
\end{equation*}
$$

since

$$
f(0)=\sum_{m=1}^{N} e^{2 \pi i m^{k} 0}=\sum_{m=1}^{N} 1=N
$$

Now, by a similar argument presented in (6.2), we know that

$$
\int_{0}^{1}|f(\alpha)|^{2 j} d \alpha
$$

represents the number of times that

$$
x_{1}^{k}+\ldots+x_{2^{j}}^{k}=0, x_{i} \leq N
$$

which is equivalent to the definition of b_{0}, substituting $x=-y$ when applicable and re-labelling indices. By combining this insight with the inductive hypothesis (6.1), we have

$$
\begin{equation*}
b_{0}=\int_{0}^{1}|f(\alpha)|^{2^{j}} d \alpha \ll N^{2^{j}-j+\epsilon} \tag{6.8}
\end{equation*}
$$

6.2.3 The Home Stretch

By substituting in (6.3) and (6.6), we can get:

$$
\begin{aligned}
\int_{0}^{1}|f(\alpha)|^{2^{j+1}} d \alpha & =\int_{0}^{1}|f(\alpha)|^{2^{j}}|f(\alpha)|^{2^{j}} d \alpha \\
& \ll \int_{0}^{1}(2 N)^{2^{j}-j-1} \sum_{h_{1}} c_{h_{1}} e^{2 \pi i \alpha h_{1}} \sum_{h_{2}} b_{h_{2}} e^{-2 \pi i \alpha h_{2}} d \alpha \\
& =(2 N)^{2^{j}-j-1} \int_{0}^{1} \sum_{h_{1}} c_{h_{1}} e^{2 \pi i \alpha h_{1}} \sum_{h_{2}} b_{h_{2}} e^{-2 \pi i \alpha h_{2}} d \alpha
\end{aligned}
$$

If we let $f(x)=c_{h}$ and $g(x)=\overline{g(x)}=b_{h}$ (since the b_{h} are all real-valued), then we can apply Parseval's Identity (4.1) to get:

$$
\begin{equation*}
\int_{0}^{1}|f(\alpha)|^{2^{j}+1} d \alpha \ll(2 N)^{2^{j}-j-1} \sum_{h} c_{h} b_{h} \tag{6.9}
\end{equation*}
$$

But note, by substituting in results from (6.8), (6.4), (6.7), and (6.5), we get:

$$
\begin{equation*}
\sum_{h} c_{h} b_{h}=c_{0} b_{0}+\sum_{h \neq 0} c_{h} b_{h} \ll N^{j} N^{2^{j}-j+\epsilon}+N^{\epsilon} N^{2^{j}}=2\left(N^{2^{j}+\epsilon}\right) \tag{6.10}
\end{equation*}
$$

Then, by substituting (6.10) into (6.9), we achieve:

$$
\begin{aligned}
\int_{0}^{1}|f(\alpha)|^{2^{j+1}} d \alpha & \ll(2 N)^{2^{j}-j-1} \sum_{h} c_{h} b_{h} \\
& \ll(2 N)^{2^{j}-j-1} 2\left(N^{2^{j}+\epsilon}\right) \\
& \ll(N)^{2^{j+1}-(j+1)+\epsilon}
\end{aligned}
$$

Q.E.D.

References

[1] Alex Rice, MTH 391 W Class Notes, Unpublished, University of Rochester, 2016.
[2] R.C. Vaughan, The Hardy-Littlewood method, Cambridge Univeristy Press, Cambridge, 1981.

