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1 Notation

I will be following Bob Vaughan’s use of notation in this proof.

Let n be a sufficiently large integer, and let N = bn1/kc.

Let k denote a natural number (usually k ≥ 2). All statements with ε are true
for every positive real ε.

The Vinogradov symbols � and � are used standardly: Given functions f and
g (where g takes non-negative real fvalues), f � g means |f | ≤ Cg, where C is
a constant. If f is also non-negative, then f � g means g � f .The Vinogradov
symbols may have implicit dependance on k and ε.

Given a function φ of a real variable α, iteratively define

∆1(φ(α);β) = φ(α+ β)− φ(α),

∆j+1(φ(α);β1, . . . , βj+1) = ∆1(∆j(φ(α);β1, . . . , βj);βj+1).

Finally,

f(α) :=

N∑
m=1

e2πimkα (1.1)
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2 A Useful Fact from Number Theory

Let d(n) denote the number of positive divisors of n for any natural number n.
If n has prime factorization n = pa11 . . . pakk , we know:

d(n) =

k∏
i=1

(ai + 1)

It is worth noting first that the number of pa satisfying a+ 1 > pεa is finite.

Fix ε. Since the exponential function pεa eventually grows more quickly than
the linear function a + 1, only finitely many powers of any p will satisfy the
inequality. Specifically, as p gets sufficiently large, no power of p will satisfy
the inequality. Since ε is fixed, ∃p such that p >max{21/ε, ε1/ε}. By defining
f(x) = pεx and g(x) = x + 1, we see that f(1) = pε > 2 = g(1) and f ′(x) =
ε(logp)pεx > 1 = g′(x) for x ≥ 1. Then, since f(x) ≥ g(x) for x ≥ 1, no power
of p satisfies the inequality.

This established, we now wish to prove that d(n)� nε for every ε > 0.

Proof. Consider the prime factorization of n = pa11 . . . pakk . Of these pi, only
finitely many satisfy a + 1 > pεai . Rename these qa11 , . . . qall , and keep the re-
maining p

al+1

l+1 , . . . , p
ak
k . Now, since the product of the qis is a constant dependent

only on ε, say, Q, we have:

d(n) ≤ Q
k∏
i=1

(ai + 1) ≤ Q
k∏
i=1

pεai ≤ Qnε

which, as required, gives:
d(n)� nε (2.1)
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3 A Comment on ∆-notation

We have previously defined, for a function φ of a real variable α:

∆1(φ(α);β) = φ(α+ β)− φ(α), (3.1)

∆j+1(φ(α);β1, . . . , βj+1) = ∆1(∆j(φ(α);β1, . . . , βj);βj+1).

Let φ(α) = αk. Then:

∆1(αk;β) = (α+ β)k − αk =

(
k

1

)
αk−1β + . . .+

(
k

k

)
βk

∆2(αk;β1, β2) = ∆1(

(
k

1

)
αk−1β1 + . . .+

(
k

k

)
βk1 ;β2)

= (

(
k

1

)
(α+ β2)k−1β1 + . . .+

(
k

k

)
βk1 )− (

(
k

1

)
αk−1β1 + . . .+

(
k

k

)
βk1 )

= (

(
k

1

)
(αk−2β1β2 + . . .+ β1β

k−1
2 ) + . . .+

(
k

k − 1

)
βk−1

1 β2

Then, we can show that ∆j(α
k;β1, . . . , βj) = β1 . . . βjpj(α;β1, . . . , βj), where

pj(α;β1, . . . , βj) is a polynomial in α of degree k − j, by induction:

Proof. The case j=1 has been demonstrated in (3.1). Suppose that

∆j−1(αk;β1, . . . , βj−1) = β1 . . . βj−1pj−1(α;β1, . . . , βj−1)

Then, where c and d represent the appropriate binomial coefficients:

∆j(α
k;β1, . . . , βj) =∆1(β1 . . . βj−1pj−1(α;β1, . . . , βj−1);βj)

=∆1(ck−j+1β1 . . . βj−1α
k−j+1 + . . .+ c0β1 . . . βj−1;βj)

=(ck−j+1β1 . . . βj−1(α+ βj)
k−j+1 + . . .+ c0β1 . . . βj−1)

− (ck−j+1β1 . . . βj−1α
k−j+1 + . . .+ c0β1 . . . βj−1)

=dk−jβ1 . . . βjα
k−j + . . .+ d0β1 . . . βj

which is exactly what was to be shown. Then:

∆j(α
k;β1, . . . , βj) = β1 . . . βjpj(α;β1, . . . , βj) (3.2)

where pj(α;β1, . . . , βj) is a polynomial in α of degree k − j with integer-valued
coefficients.

3



4 Proof of Parseval’s Identity

We will use a finite version of Parseval’s Identity for the purposes of this proof.

Suppose f : Z → C has finite support - that is, f(x) = 0 for all x outside of

some large interval, and define f̂ : [0, 1)→ C by :

f̂(α) =
∑
x∈Z

f(x)e2πixα; ĝ(α) =
∑
x∈Z

g(x)e2πixα

Then ∫ 1

0

f̂(α)ĝ(α)dα =
∑
x∈Z

f(x)g(x) (4.1)

Proof. ∫ 1

0

f̂(α)ĝ(α)dα =

∫ 1

0

(
∑
x∈Z

f(x)e2πixα
∑
y∈Z

g(y)e2πiyα)dα

=

∫ 1

0

(
∑
x∈Z

f(x)e2πixα
∑
y∈Z

g(y)e−2πiyα)dα

=

∫ 1

0

(
∑
x,y∈Z

f(x)e2πixαg(y)e−2πiyα)dα

=

∫ 1

0

(
∑
x,y∈Z

f(x)g(y)e2πi(x−y)αdα

=
∑
x,y∈Z

(f(x)g(y))

∫ 1

0

e2πi(x−y)αdα︸ ︷︷ ︸
= 1 IFF x = y, else = 0

=
∑
x∈Z

f(x)g(x)

And, in particular, if f(x) = g(x), then∫ 1

0

|f̂(α)|2dα =
∑
x∈Z
|f(x)|2
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5 Proof of Weyl’s Lemma

Let

T (φ) =

Q∑
x=1

e2πiφ(x)

where φ is an arbitrary arithmetical function: that is, a function f : N → C.
Then,

|T (φ)|2
j

≤ (2Q)2j−j−1
∑
|h1|<Q

. . .
∑
|hj |<Q

Tj (5.1)

where
Tj =

∑
x∈Ij

e2πi∆j(φ(x);h1,...,hj)

and the intervals Ij = Ij(h1, . . . , hj) (possibly empty) satisfy

I1(h1) ⊂ [1, Q], Ij(h1, . . . , hj) ⊂ Ij−1(h1, . . . , hj−1).
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Proof. We will use a proof by induction on j.

When j = 1, we wish to show that

|T (φ)|2
1

≤ (2Q)21−1−1
∑
h1≤Q

∑
x∈Ij

e2πi∆1(φ(x);h1)

That is, that

|
Q∑
x=1

e2πiφ(x)|2 ≤
∑
h1≤Q

∑
x∈I1

e2πi∆1(φ(x);h1)

Now, we know that:

|
Q∑
x=1

e2πiφ(x)|2 =

Q∑
y=1

e2πiφ(y)

Q∑
x=1

e−2πiφ(x)

=

Q∑
x,y=1

e2πi(φ(y)−φ(x))

By substituting y = x+ h1, we get:

=

Q∑
x=1

Q∑
y=1

e2πi(φ(x+h1)−φ(x))

=

Q∑
x=1

Q∑
x+h1=1

e2πi∆1(φ(x),h1)

=

Q∑
x=1

Q−x∑
h1=1−x

e2πi∆1(φ(x),h1)

Since x ranges from 1 to Q, we know that h1 ranges from 1−Q to Q− 1. Since
h1 ranges from 1−x to Q−x we know that x also ranges from 1−h1 to Q−h1,
so x ∈ I1 = [1, Q] ∩ [1− h1, Q− h1].

Then,

|
Q∑
x=1

e2πiφ(x)|2 =
∑
h1≤Q

∑
x∈I1

e2πi∆1(φ(x);h1)

so

|
Q∑
x=1

e2πiφ(x)|2 ≤
∑
h1≤Q

∑
x∈I1

e2πi∆1(φ(x);h1)
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The base case established, assume the conclusion (5.1) is true for j.

First, note that

|Tj |2 = |
∑
x∈Ij

e2πi∆j(φ(x);h1,...,hj)|2

=
∑
y∈Ij

e2πi∆j(φ(y);h1,...,hj)
∑
x∈Ij

e−2πi∆j(φ(x);h1,...,hj)

By substituting y = x+ hj+1, |hj+1| < Q, we get:

=
∑

|hj+1|<Q

∑
x+hj+1∈Ij

∑
x∈Ij

e2πi(∆j(φ(x+hj+1);h1,...,hj)−∆j(φ(x);h1,...,hj))

=
∑

|hj+1|<Q

∑
x∈Ij+1

e2πi∆j+1(φ(x);h1,...,hj+1)

= Tj+1

where Ij+1 = Ij ∩ {x|x+ h ∈ Ij}

Now, by squaring both sides of (5.1), we get

|T (φ)|2
j+1

≤ ((2Q)2j−j−1)2(
∑
|h1|<Q

. . .
∑
|hj |<Q

Tj)
2

≤ (2Q)2j+1−2j−2
∑
|h1|<Q

. . .
∑
|hj |<Q

|Tj |2(Cauchy-Schwartz*)

≤ (2Q)2j+1−2j−2(2Q)j
∑
|h1|<Q

. . .
∑
|hj |<Q

|Tj |2

= (2Q)2j+1−(j+1)−1
∑
|h1|<Q

. . .
∑
|hj |<Q

|Tj |2

= (2Q)2j+1−(j+1)−1
∑
|h1|<Q

. . .
∑
|hj |<Q

Tj+1

*A well-known formulation of the Cauchy-Schwartz Inequality is:∑
aibi ≤

√∑
a2
i

√∑
b2i

When both sides are squared, this yields:

(
∑

aibi)
2 ≤

∑
ai
∑

bi

This is the form we use iteratively in this step, taking ai = Tj and bi = 1.

The result is then proved.
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6 Proof of Hua’s Lemma

Suppose that 1 ≤ j ≤ k. Then,∫ 1

0

|f(α)|2jdα� N2j−j+ε (6.1)

Proof. We will use a proof by induction on j.

6.1 Base Case j = 1

First, suppose that j = 1. We know by the Fundamental Theorem of Calculus
that ∫ 1

0

e2πixkα =

{
1, x = 0

0, x 6= 0
(6.2)

where x ∈ Z.

The proof of Parseval’s Lemma as given works just as well with e2πixkα as it

does with e2πixα (as shown in Section 4), since it is still true that e2πixkα = 1
IFF xm = xn, else = 0. So, Parseval’s Identity holds, with f(x) = 1, so by
definition of f(α),∫ 1

0

e2πixkα =

N∑
m=1

1 = N � N21−1+ε = N1+ε

This is clearly true. Done.

6.2 Inductive case

Now, let us suppose that (6.1) is true for 1 ≤ j ≤ k − 1. By using φ(x) = αxk

in Weyl’s Lemma (5.1) along with (3.2), we obtain:

|f(α)|2
j

� (2N)2j−j−1
∑
h1

. . .
|hi|≤N

∑
hj

∑
x∈Ij

e2πiαh1...hjpj(x;h1,...,hj)

By (3.2), we know that pj(x;h1, . . . , hj) is a polynomial in x of degree k − j
with integer coefficients.
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6.2.1 Defining and Bounding ch

Since x and all hi are integers, the value of the polynomial when evaluated
must also be an integer. Reasoning thusly, we can simply rewrite the mul-
tiple sum as a single sum over the evaluated values of the polynomial - to
wit, the integers, along with a constant ch that is the number of solutions to
h1 . . . hjpj(x;h1, . . . , hj) = h.

Then, we have:

|f(α)|2
j

� (2N)2j−j−1
∑
h

che
2πiαh (6.3)

Now, let us consider bounds on the ch.

c0 is the number of solutions to h1 . . . hjpj(x;h1, . . . , hj) = 0. There are (2N+1)j

distinct ways to fix the hi such that |hi| ≤ N , as specified by the bounded sums.
Given fixed hi, the polynomial can have at most k− j roots, since it is of order
k− j. Then, there are at most (k− j)(2N + 1)j � N j solutions. By the nature
of the Vinogradov notation, we can then conclude that:

c0 � N j (6.4)

Now, for h 6= 0, we make the key observation that pj must be a factor of h.
Since all the hi ≤ N , we know that |h| ≤ Ny, where y is an arbitrary constant.
By our useful fact from number theory (2.1), we know that:

d(h)� Nyε

Since pj is a polynomial of degree k − j, only k − j values of x can equal each
divisor, so

c(h)� Ny(k−j)ε

And if we substitute in
ε

y(k − j)
(for if it is true for this smaller value, it is

surely true for the larger value that is ε), we get:

ch � N ε(h 6= 0) (6.5)

6.2.2 Defining and Bounding bh

Consider again the expression |f(α)|2j

. By the definition of (1.1), we have

f(α) =

N∑
m=1

e−2πimkα = f(−α)
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Then,

|f(α)|2
j

=

√
f(α)2jf(α)2j

= f(α)2j−1

f(−α)2j−1

=
∑
|x1|<N

1≤i≤2j−1

e
2πi(xk

1+...+xk
2j−1

)α
∑
|y1|<N

1≤i≤2j−1

e
−2πi(yk1 +...+yk

2j−1
)α

=
∑

|x1|,|y1|<N
1≤i≤2j−1

e
2πi(xk

1+...+xk
2j−1

−yk1−...−y
k
2j−1

)α

=
∑
h

bhe
−2πiαh

Then,

|f(α)|2
j

=
∑
h

bhe
−2πiαh (6.6)

where bh is the number of solutions to xk1 + . . .+ xk2j−1 − yk1 − . . .− yk2j−1 = h,
xi, yi ≤ N .

If we let α = 0, then we get:∑
h

bh(1) = f(0)2j

= N2j

(6.7)

since

f(0) =

N∑
m=1

e2πimk0 =

N∑
m=1

1 = N

Now, by a similar argument presented in (6.2), we know that∫ 1

0

|f(α)|2jdα

represents the number of times that

xk1 + . . .+ xk2j = 0, xi ≤ N

which is equivalent to the definition of b0, substituting x = −y when applicable
and re-labelling indices. By combining this insight with the inductive hypothesis
(6.1), we have

b0 =

∫ 1

0

|f(α)|2
j

dα� N2j−j+ε (6.8)
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6.2.3 The Home Stretch

By substituting in (6.3) and (6.6), we can get:∫ 1

0

|f(α)|2
j+1

dα =

∫ 1

0

|f(α)|2
j

|f(α)|2
j

dα

�
∫ 1

0

(2N)2j−j−1
∑
h1

ch1
e2πiαh1

∑
h2

bh2
e−2πiαh2dα

= (2N)2j−j−1

∫ 1

0

∑
h1

ch1
e2πiαh1

∑
h2

bh2
e−2πiαh2dα

If we let f(x) = ch and g(x) = g(x) = bh (since the bh are all real-valued), then
we can apply Parseval’s Identity (4.1) to get:∫ 1

0

|f(α)|2
j+1dα� (2N)2j−j−1

∑
h

chbh (6.9)

But note, by substituting in results from (6.8), (6.4), (6.7), and (6.5), we get:∑
h

chbh = c0b0 +
∑
h 6=0

chbh � N jN2j−j+ε +N εN2j

= 2(N2j+ε) (6.10)

Then, by substituting (6.10) into (6.9), we achieve:∫ 1

0

|f(α)|2
j+1

dα� (2N)2j−j−1
∑
h

chbh

� (2N)2j−j−12(N2j+ε)

� (N)2j+1−(j+1)+ε

Q.E.D.
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