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1 Notation

I will be following Bob Vaughan’s use of notation in this proof.
Let n be a sufficiently large integer, and let N = Lnl/kj.

Let k denote a natural number (usually & > 2). All statements with € are true
for every positive real e.

The Vinogradov symbols <« and >> are used standardly: Given functions f and
g (where g takes non-negative real fvalues), f < g means |f| < Cg, where C is
a constant. If f is also non-negative, then f > g means g < f.The Vinogradov
symbols may have implicit dependance on k and e.

Given a function ¢ of a real variable «, iteratively define
Ar(d(a); B) = ¢pla+ B) — ¢(a),
Aji1(d(@); Bry - Biv1) = Ar(Aj(d(@); Brs - - -5 B5); Bjr1)-

Finally, N
.k
fla):= ) emme (1.1)
m=1



2 A Useful Fact from Number Theory

Let d(n) denote the number of positive divisors of n for any natural number n.
If n has prime factorization n = p{* ... pi", we know:

k

d(n) = [ (@ +1)

i=1

It is worth noting first that the number of p® satisfying a + 1 > p® is finite.

Fix e. Since the exponential function p® eventually grows more quickly than
the linear function a + 1, only finitely many powers of any p will satisfy the
inequality. Specifically, as p gets sufficiently large, no power of p will satisfy
the inequality. Since € is fixed, Ip such that p >max{2/¢ ¢'/<}. By defining
f(z) = p= and g(x) = = + 1, we see that f(1) = p > 2 = ¢g(1) and f'(x) =
e(logp)p®™ > 1 = ¢'(x) for > 1. Then, since f(z) > g(x) for z > 1, no power
of p satisfies the inequality.

This established, we now wish to prove that d(n) < n¢ for every € > 0.

Proof. Consider the prime factorization of n = p{*...pp*. Of these p;, only
finitely many satisfy a +1 > p{®. Rename these ¢7*,... ¢/, and keep the re-
maining pffll, ..., ppF. Now, since the product of the g;s is a constant dependent
only on €, say, QQ, we have:



3 A Comment on A-notation

We have previously defined, for a function ¢ of a real variable a:
Ar(d(a); B) = ¢p(a+ B) — ¢(a), (3.1)
Aji1(d(@); Bry- - Big1) = Ar(Aj(d(); Brs - - -5 B5); Biv1)-

Let ¢(a) = a*. Then:

Al(ozk;,@) = (oz—l—ﬁ)k —ak = <l;>ak_1ﬂ+ o+ (Z)Bk

Ao (a; 81, B2) = A1((l;> TG (2)5{“;52)

— ((’f) (a+B) 181 +... + (:)5?) - ((lf)a’“‘lﬂl +.+ (Z) )

- ((T>(0k2ﬂ162+...+ﬂ1 f_l)+...+ <kﬁl> 5_152

Then, we can show that A;(a*;p1,...,5;) = Bi...8;p;j(a; B, .., B;), where
pj(a; B1,...,5;) is a polynomial in « of degree k — j, by induction:

Proof. The case j=1 has been demonstrated in (3.1). Suppose that

Ajo1 (¥ By, Bic1) = Br. . Bimapj—1(es Ba, ..., Bj—1)
Then, where ¢ and d represent the appropriate binomial coefficients:
Aj(0F; By, ... B) =A1(Br ... Bi—ipj—1(e; By, ..., Bi—1): Bj)
=Ai(ch_ji1B1. .. Bi1aF I 4By B3 5))
:(CkfjJrlBl . ﬂj,l(a + 5j)k_j+1 + ...+ 0051 . ﬂjfl)
— (Ck,jJrlBl R ﬂj,lak_j"'l + ... +cfBr... ijl)
:dkrfjﬁl ce Bjak_j +...+ dOBl RN 6]

which is exactly what was to be shown. Then:
A5 Br, s By) = B Bipi(as Buy -, By) (32)

where p;(o; B, ..., ;) is a polynomial in a of degree k — j with integer-valued
coefficients.



4 Proof of Parseval’s Identity

We will use a finite version of Parseval’s Identity for the purposes of this proof.

Suppose [ : Z — C has finite support - that is, f(x) = 0 for all x outside of
some large interval, and define f :[0,1) — Cby :
— Zf(m 271'77"04 A Zg 27r1'ra
TE€EZL TEL
Then

1

(@)g(a)da =) f(z)g(x) (4.1)

TEZL

Proof.

/Olf( da—/ Zf 2m‘mW)da

TEZL YyEL
/ E f 27mro¢ E g 27rzya do
TEZL YEL
1

:/ (Z f(x)€2wixa@672wiya)da

0

= [(3 st erean

= 3 (f@igw) [ Emereda

z,y€L \0—,_/
=1IFF z =y, else =0

And, in particular, if f(z) = g(z), then



5 Proof of Weyl’s Lemma

Let
Q

T((b) — Z 6271'1'(75(1')
r=1

where ¢ is an arbitrary arithmetical function: that is, a function f : N — C.
Then,

T(@))F < Q¥ Y. Y T (5.1)

|h1]<@Q lhi|<@Q

where
Tj — Z eQWiAj(Gb(f);hl,...,hj)

zel;

and the intervals I; = I;(h,..., h;) (possibly empty) satisfy

Il(hl) C [1,Q],Ij(h1,...,hj) - ijl(hl,...,hjfl).



Proof. We will use a proof by induction on j.

When 7 =1, we wish to show that

(@) < @) 17 Y D ePmdenhy

h1<Q z€l;
That is, that
Q
‘2627\'1@5(1)‘2 < Z Z e2miA1(¢(2):h1)
=1 hi1<Qxel;

Now, we know that:

Q Q Q
|Z eQﬂ'iqb(x)|2 — ZeZTri(ﬁ(y) Z e—27ri¢(9c)
r=1 y=1 r=1

Q .
— Z e2mi(o(y)—¢(2)
z,y=1
By substituting y = x + hy, we get:

Q Q
=33 enilele )=o)

rz=1y=1

Q
QﬂiAl((z)(:E),hl)

Il
Me

€
h1=1

=1z

+

O

8

eQﬂ'iAl (¢(a:)7h1)

Il
Me

Il
—

T hi=1—=x

Since x ranges from 1 to ), we know that hj ranges from 1 — @ to @ — 1. Since
hy ranges from 1 —x to @ —x we know that x also ranges from 1 —h; to Q — hq,
sox el =[L,Q|N[1—hy,Q — hy].

Then,

S msop o Y o

‘ 627rz¢>(:1:)‘2 — 627T2A1(¢(1)4h1)
z=1 hi<Qzel

SO
Q

‘2627”"25(95)‘2 < Z Z e2miA1(d(2)3h1)
=1 h1<Qz€l,



The base case established, assume the conclusion (5.1) is true for j.

First, note that

12 — 2miAj(p(x);hi,....h;) |2
1P =1 e |

I’GI]‘
— § 2™ 18 (¢(y)ih1,.- sk ) § 28 (#(@)ih1,. k)
yel; z€l;

By substituting y = = + hjt1, |hjt1] < Q, we get:

[hj+1]<Q z+hjp1 €15 x€l;

Z Z 271811 (¢(x)sha s hiyign)

[hj+1|<Q @€l
J+1

where I; 11 = I; N{z|z + h € I;}

Now, by squaring both sides of (5.1), we get

J+1 J_ i

SR IC R D S S
|h1|<Q |h;l<@Q

§(2Q)2j+1_2j_2 Z Z |T;|?(Cauchy-Schwartz*)
\h1|<Q |hjl<@Q

<@Q)Y Q)Y Y Y TP

[h1]<Q |h;|<Q

=(2Q)¥7 U NN )

[hi]<@Q  |h;[<Q

= (QFTOWT KT L 3T T

[hi]<@Q  |hj[<@Q

T(¢)]

*A well-known formulation of the Cauchy-Schwartz Inequality is:

When both sides are squared, this yields:

O aibi)® <Y ai Y b

This is the form we use iteratively in this step, taking a; = T; and b; = 1.

The result is then proved.



6 Proof of Hua’s Lemma

Suppose that 1 < j < k. Then,

1 .
/O f(e)Pda < N¥ —ite (6.1)

Proof. We will use a proof by induction on j.

6.1 Base Case j =1

First, suppose that j = 1. We know by the Fundamental Theorem of Calculus
that
1
, 1, 2=0
/ 627rm’ka _ T (62)
0 O, x 7é 0

2mizF o

where x € Z.

The proof of Parseval’s Lemma as given works just as well with e as it

does with €27 (as shown in Section 4), since it is still true that e2micta —
IFF z,, = x,, else = 0. So, Parseval’s Identity holds, with f(z) = 1, so by
definition of f(a),

1 N
/ e2mizta _ Z 1= N < N2 —l+e = Nlte
0

m=1

This is clearly true. Done.

6.2 Inductive case

Now, let us suppose that (6.1) is true for 1 < j < k — 1. By using ¢(z) = az*

in Weyl’s Lemma (5.1) along with (3.2), we obtain:

|f(a)\2'7 < (2N)2.7,j,1 Z ‘h“<NZ Z ez‘ﬂ'iahl.uh]'pj(I;hl,-u,h]‘)
hy -

h; z€l;

By (3.2), we know that p;(x;hi,...,h;) is a polynomial in z of degree k — j
with integer coefficients.



6.2.1 Defining and Bounding ¢

Since = and all h; are integers, the value of the polynomial when evaluated
must also be an integer. Reasoning thusly, we can simply rewrite the mul-
tiple sum as a single sum over the evaluated values of the polynomial - to
wit, the integers, along with a constant ¢, that is the number of solutions to
hlhjpj(l',hl,,hj) = h.

Then, we have: v ,
)P < @N)? 7713 et (6.3)
h

Now, let us consider bounds on the cy,.

co is the number of solutions to hy ... hjpj(x; hy, ..., hj) = 0. There are (2N+1)
distinct ways to fix the h; such that |h;| < N, as specified by the bounded sums.
Given fixed h;, the polynomial can have at most k — j roots, since it is of order
k — j. Then, there are at most (k — j)(2N + 1)/ < N7 solutions. By the nature
of the Vinogradov notation, we can then conclude that:

co < N7 (6.4)

Now, for h # 0, we make the key observation that p; must be a factor of h.
Since all the h; < N, we know that |h| < NY, where y is an arbitrary constant.
By our useful fact from number theory (2.1), we know that:

d(h) < N¥¢
Since p; is a polynomial of degree k — j, only k — j values of x can equal each

divisor, so 4
c(h) < NY(k—j)e

And if we substitute in 7(15 3 (for if it is true for this smaller value, it is
Yk —J
surely true for the larger value that is €), we get:
cp < N¢(h #£0) (6.5)

6.2.2 Defining and Bounding b,

Consider again the expression |f(a)|? . By the definition of (1.1), we have

N .
f(Oé) — Z e—27rzm a f(—Oé)
m=1



Then,

IF(@))? =\ f(@)¥ f()?
= f@)? ()

. k k ok k
_ Z 627r2(ac1+...+x2_7‘71)0z Z e—2m(y1+...+y2_7‘71)a

|1 | <N lyr| <N
1<i<2i 1 1<i<2i 71t
. k k k k
_ z : 627T’L(Il+"'+x2j_17yl7"'7y2j_1)a
[z1], |y | <N
1<i<29~t

_ E bhe—Qﬂlah
h

Then, ‘
[f(@)* = bue2mieh (6.6)
h
where by, is the number of solutions to z%¥ + ... + zgj_l —yk - - ygj_l =h,
If we let & = 0, then we get:
>obu(1) = f(0)” = N (6.7)
h
since
N . N
f(()):Ze%mmO:Zl:N
m=1 m=1
Now, by a similar argument presented in (6.2), we know that
1 .
| 1#@)Pida
0
represents the number of times that
x’f+...+x§j =0,2; <N
which is equivalent to the definition of by, substituting = —y when applicable

and re-labelling indices. By combining this insight with the inductive hypothesis

(6.1), we have
1 . o
bo = / |f(Oé)|2JdOé < ]\fzj_j-"_6
0

10

(6.8)



6.2.3 The Home Stretch

By substituting in (6.3) and (6.6), we can get:
! J+1 ! j i
[ 1s@F da = [ i) @) da
1 . _ .
< / (2N)22 —j—1 Z ch, 627r1ah1 Z bh26727r1ah2da
0

h1 h2

1
i . o
— (2N)2 J 1/ E Ch, e?frzahl E bh2€ 27rwzh2da
0 hl h2

If we let f(z) = ¢p and g(x) = g(x) = by, (since the by, are all real-valued), then
we can apply Parseval’s Identity (4.1) to get:

1 . .
/ F(@) P Hda < NP3 epby (6.9)
0 h

But note, by substituting in results from (6.8), (6.4), (6.7), and (6.5), we get:
S enbn = cobo + Y enby < NIN? 7IHe 4 NN? = 2(NPH) (6.10)

h h#£0

Then, by substituting (6.10) into (6.9), we achieve:

1 , o
[ 1@ da < @M1 et
0 h
< (2N)¥ —i-1g(N¥ +e)
< (N)2j+1_(j+1)+€

Q.E.D.
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